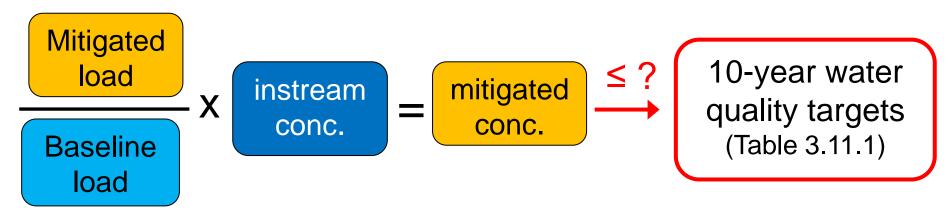
Healthy Rivers

Craig Depree

Scope of evidence

- asked to review large amount of peer-reviewed technical work by relevant experts, and comment on:
 - need to manage all 4 contaminants (including nitrogen)
 - 'adequacy' of water quality modelling
 - whole- (i.e. FMU) vs sub-catchment scale management
- Additional comments: (addressed in expert conferencing?)
 - water quality at upper FMU 'node' (Karapiro)
 - application of lake trophic state attributes to the mainstem
 - E.coli attribute
 - inconsistent use of 'band-testing' (removed)

Managing all 4 contaminants


- V&S Obj. k …safe to swim in and take food from…
- N, P, sediment & E.coli relevant to the values in Obj.k
- Need to manage N despite P being 'more important'
 - trophic state effects phytoplankton / periphyton / MCI
 - best practice = dual nutrient management (US EPA 2015)
 - nitrogen shown to limit maximum biomass in summer
 - toxicity (NPS-FM)
 - mainstem- 'A' toxicity; tributaries several 'C' (20% effects)
 - load to come of significant trends, 80% of TN increasing

'Adequacy' of water quality models

- not a water quality modelling expert, but recognizing...
 - done by experts, established models, and peer-reviewed
- to review 'water quality' aspects of PC1, it was necessary to understand how the models were used
- requirements:
 - converting subcatchment loads into instream loads/conc.
 - current state ("baseline") and "mitigation" scenarios
 - estimating concentrations for subcatchment with no data
 - estimating clarity from changes in nutrient / sediment loads
- my understanding is that the modelling achieves these

Application of modelling for PC1

- from a water quality perspective in PC1...
- model instream concs. from applying policy mix
 - Doc #6551310, Doole et al. 2016

compare these with PC1 10-year targets

Catchment (FMU) vs subcatchment

- largely irrelevant (if justification are 80y targets met)
- 'Community' set water quality targets (concs.)
- PC1 needs to make ≥10% progress against these
- PC1 proposes set of mitigations to achieve this
- tested via modelling (Doc #6551310, Doole et al. 2016)
 - done at subcatchment-scale (routed downstream)
- results indicated 'policy mix' achieved magnitude and rate of change required by PC1

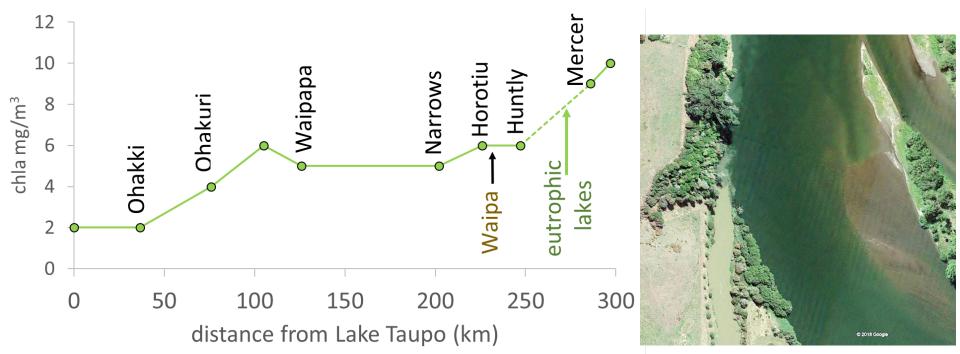
Catchment (FMU) vs subcatchment

- PC1 requires 10% progress toward 80-yr targets
- Doc #6551310 (Doole et al. 2016; Table 5, p. 30)

Attribute	median improvement (%) rel. to 80-yr target
Chla (median)	72
TN (median)	33
TP (median)	31
Nitrate (median)	68
E.coli (95th%ile)	69

PC1 policy mix meets10-yr target for all contaminants

Comments to improve 'logic'


- (1) absence of water quality site at Karapiro
 - Downstream boundary (node) of upper FMU
 - Narrows argued as a proxy site for upper FMU
 - If not, what is the water quality leaving the upper FMU?
- (2) 'disconnect' between chla and clarity (upper FMU)
 - Chla accounts for >50% of 'light attenuation' in upper lakes
 - median Chla in upper FMU already compliant (≤5 mg/m³)
 - By contrast, clarity much lower than 80-yr target of 3 m
 - -Waiapa = 2.1 m; Narrows (Karapiro proxy) = 1.8 m

Comments to improve 'logic'

- (3) Use of NPS-FM lake trophic state to mainstem
- justified for upper FMU c. 35 day residence time
- potential issues:
 - 'B'-band chla and TP, but 'A'-band TN rationale?
 - 'seasonally stratified' vs 'polymictic' lake classification

- NPS-FM lake attribute numeric objective
 - seasonally stratified: "A" = 160 mg/m³; "B" = 350 mg/m³
 - polymictic: "A" = 300 mg/m³; "B" = 500 mg/m³

- (3) Use of NPS-FM lake attribute to mainstem (cont.)
- little justification for applying to lower/middle FMU
 - uncertainty around the potential for lake TN/TP attributes to control chla in the mainstem (internal vs external sources)
 - How do nutrient targets in mainstem relate to chla / clarity ?

