Page content Page content Section navigation Topic navigation Accessibility keys Sitemap Search Contact us portal
Go to Waikato Regional Council homepage
search icon mail icon contact us icon

  Services » Publications » Technical reports - by year » tr200534

Further investigation of direct groundwater seepage to Lake Taupo

Report: TR05/34
Author: Max Gibbs, John Clayton, Rohan Wells (NIWA)


Environment Waikato commissioned NIWA to undertake further investigations of direct groundwater seepage into Lake Taupo through Whangamata Bay and Whakaipo Bay. This investigation is a follow-up study to a masters degree study by Ross Hector in 2004. The original water balance by Hector indicated that shallow groundwater accounted for only about 5 percent of the residual water input to these catchments after allowing for stream flow and evaporation. The suggestion was that the remaining groundwater was entering the lake as deep seepages or springs.

This study found that there were areas of deep groundwater inflow within the depth range of 2 m to 6.5 m and that these were as diffuse seepages rather than discrete springs. The size of seepage areas varied on a range of scales. Small patches (cm2) of seepage were dotted over larger areas (m2) which were found in zones that covered several hectares of lake bed. Inshore and further offshore from these there were no apparent seepages. Flow estimations indicate deep groundwater inflows totalled about 0.46 m3 s-1 in Whangamata Bay and about 0.24 m3 s-1 in Whakaipo Bay. These inflow estimates have potentially large errors due to the variability of seepage within the groundwater zones and the degree of bay-wide extrapolation, but indicate that almost all of the groundwater unaccounted for in the Hector water balance can be attributed to direct deep groundwater seepage.

It was found that the groundwater inflow was colder than the overlying lake water and thus flowed as a thin layer down the slope of the lake bed, or pooled in depressions. The nutrients in the deep groundwater were being utilised by benthic algae and the lake bed in the areas of inflow was covered with thick algal mats. Nutrient uptake by benthic algae effectively removed a substantial proportion of the dissolved reactive phosphorus and dissolved inorganic nitrogen from the deep groundwater inflows.

Because of the temperature-induced density effect initially holding the deep groundwater seepage close to the lake bed and hence protecting it from wave-induced mixing, a high level of nutrient uptake is considered likely throughout the year. However, as this study was conducted in late summer, it is uncertain what the seasonal effects will be on the level of nutrient uptake by the benthic algal mats, especially in winter.

If seasonal effects are minimal, the deep groundwater inflow is unlikely to constitute a major direct nutrient source to the lake water column. However, while the nutrient load entering the lake via the deep groundwater is not immediately available to support phytoplankton growth in the lake water column, they will eventually be recycled from the sediments after the algae decay. Other in-lake processes will then determine their fate.

Further Investigation of Direct Groundwater Seepage to Lake Taupo
(587 kb, 83 seconds to download, 56k modem)

Table of Contents

Executive summary iv
1 Introduction 1
2 Methods 3
2.1 Whangamata Bay (5 April 2005) 3
2.2 Whakaipo Bay (6 April 2005) 4
2.3 Groundwater flow estimation 5
2.4 Dye tracing and flow visualisation 7
3 Results 8
3.1 Whangamata Bay 8
3.1.1 Diver survey 8
3.1.2 Groundwater flow estimation 10
3.1.3 Groundwater nutrient efflux 11
3.2 Whakaipo Bay 13
3.2.1 Diver Survey 13
3.2.2 Groundwater flow estimates 15
3.2.3 Groundwater nutrient efflux 17
3.3 Lake edge dye tracer 17
4 Discussion 21
4.1 Groundwater inflow 21
4.2 Nutrients 21
4.3 Management considerations 23
5 Conclusions 25
6 Conclusions 26
7 References 27
About this site     Contact us     Feedback and complaints New Zealand Government